

Пигменты АО «Афая» для за полимерных материалов за полименты до полименты

Ассортимент пигментов «Афая» для пластмасс

- ✓ Органические пигменты Sudarshan (Индия)
- √ Железооксидные пигменты, в том числе термостойкие, Тоdа (Китай).
 - Ультрамарины Lapis Lazuli (Китай)
- 💙 Диоксиды титана, сульфид цинка, литопоны, бланфиксы Venator (Великобритания)
- Кадмиевые пигменты
- 💙 Флюоресцентные продукты Radiant Color (Бельгия)
- ♥ Перламутровые пигменты Geotech (Голландия), Shanghai Colorbridge и Zhejiang Ruicheng (Китай)
- 💙 Алюминиевые пигменты Carlfors Bruk (Швеция), AVL Metal Powders (Бельгия), Sunrise (Китай)
- V Бронзовые пигменты AVL Metal Powders (Бельгия)

Органические пигменты Sudarshan (Индия)

Широчайший выбор органических пигментов для окраски изделий, получаемых методом ротоформовки, как для эксплуатации внутри помещения, так и в условиях улицы.

ъ	Наименование	Цвет	Колор- индекс	Термостой-кость
я вну	Sudacolor Red 5016	Красный с желтым оттенком	PR 53:1	270°C
изделия :щения	Sudacolor Red 5407K	Красный с желтым оттенком	PR 53:1	260°C
(1)	Sudacolor Red 554	Красный с желтым оттенком	PR 48:2	240°C
¥ -	Sudacolor Red 564	Красный с желтым оттенком	PR 48:2	240°C
Приме	Sudacolor Red 570	Красный с желтым оттенком	PR 48:3	240°C
Ĕ	Sudacolor Red 635	Красный с синим оттенком	PR 57:1	240°C

Органические пигменты Sudarshan (Индия)

Широчайший выбор органических пигментов для окраски изделий, получаемых методом ротоформовки, как для эксплуатации внутри помещения, так и в условиях улицы.

улице	Наименование	Цвет	Колор- индекс	Термостой-кость
и на у	Sudaperm Yellow 2908	Желтый с зеленым оттенком	PY 180	290°C
	Sudaperm Yellow 2909	Желтый с зеленым оттенком	PY 180	290°C
помещения	Sudaperm Yellow 2903K	Желтый с зеленым оттенком	PY 151	290°C
внутри пом	Sudafast Yellow 129K	Средне желтый	PY 191	300°C
	Sudafast Yellow 132K	Средне желтый	PY 191	300°C
	Sudacolor Yellow 113	Желтый с красным оттенком	PY 62	240°C
изделия	Sudacolor Yellow 114	Желтый с красным оттенком	PY 139	250°C
	Sudaperm Yellow 2935	Желтый с красным оттенком	PY 139	240°C
Трименение	Sudaperm Yellow 2925	Желтый с красным оттенком	PY 110	300°C
Z Z	Sudaperm Yellow 2923	Желтый с красным оттенком	PY 110	300°C

Органические пигменты Sudarshan (Индия)

a	Наименование	Цвет	Колор- индекс	Термостой-кость
и на улице	Sudaperm Orange 2917	Оранжевый	PO 64	300°C
	Sudaperm Orange 2918	Оранжевый	PO 64	300°C
	Sudaperm Red 2963K	Красный средний	PR 170	260°C
vеще	Sudaperm Red 2967K	Красный с синим оттенком	PR 170	250°C
Трименение изделия внутри помещения	Sudaperm Pink 2991	Красный с синим оттенком	PR 122	300°C
	Sudaperm Red 2985	Красный с синим оттенком	PV 19	300°C
	Sudaperm Red 2953K	Красный с синим оттенком	PR 264	300°C
	Sudaperm Violet 2944	Фиолетовый с красным оттенком	PV 23	280°C
	Sudaperm Blue 2764	Синий с красным оттенком	PBI 15:1	280°C
	Sudaperm Blue 2774	Синий с красным оттенком	PBI 15:1	260°C
ᅙ	Sudaperm Blue 2789	Синий с зеленым оттенком	PBI 15:3	300°C
*	Sudaperm Green 2730K	Зеленый с желтым оттенком	PG 7	300°C

Железооксидные пигменты Toda (Китай)

Наименование	Цвет	Колор- индекс	Термостой-кость
UPT 20 Toda	Желтый	PY 42	240-260°C
UPT 303 Toda	Черный	PBk 11	700°C
3100 RMC Toda	Красный	PR 101	500°C
3110 RMC Toda	Красный	PR 101	500°C
3125 RMC Toda	Красный	PR 101	500°C
UPT 645 Toda	Коричневый	PBr 6	350°C
UPT 56 Toda	Зеленый	Смесь	230°C

Диоксиды титана Venator (Великобритания)

Sachtleben R-405

Tioxide TR28

Tioxide TR48

- У Рутильная модификация
- Обеспечивают хорошую пропускную способность оборудования для переработки пластмасс
- Хорошие оптические характеристики
- Благодаря мелкому размеру частиц и узкому распределению частиц по размерам эти марки пигментов на основе диоксида титана отличает голубоватый оттенок разбела и высокая укрывистость.

Диоксиды титана Venator (Великобритания)

Технические характеристики диоксидов титана Venator (

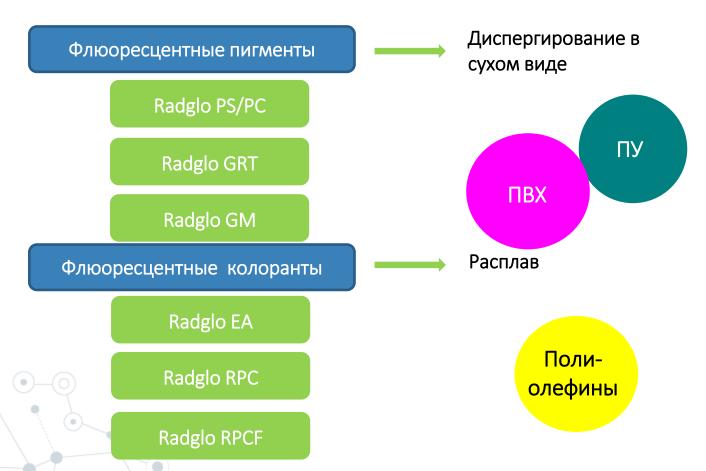
R405	TR28	TR 48
96	98	97
4,1	4,1	4,1
Al ₂ O ₃ + полисилоксан	Al ₂ O ₃ + полисилоксан	Al ₂ O ₃ + полисилоксан
97,0	97,0	98,0
4,0	3,6	2,9
105	105	109
1,045	1,045	1,052
<20	<20	<20
	96 4,1 Al ₂ O ₃ + полисилоксан 97,0 4,0 105	96 98 4,1 4,1 Al ₂ O ₃ + Al ₂ O ₃ + полисилоксан 97,0 97,0 4,0 3,6 105 105

Сульфиды цинка и литопоны Venator (Великобритания)

Эти белые пигменты по настоящий день широко применяются в индустрии пластмасс, хотя уступают диоксидам титана в таких параметрах как укрывистость. Их основное преимущество — низкая твердость и, соответственно, более низкий износ оборудования.

Характеристики	Sachtolith L	Sachtolith HD-S	Lithopone L	Lithopone HD-S
Содержание ZnS (%)	100%	100%	30%	30%
Содержание BaSO4 (%)	0%	0%	70%	70%
Органическая обработка	нет	да	нет	да
Координата L	97	97	98	98
Остаток на сите 45 мкм	<0,004%	<0,004%	<0,02%	<0,02%
Твердость по Моосу	3	3	3	3

Кадмиевые пигменты


Отличная альтернатива вредным кронам, дополняющая три серии органических пигментов, которая нашла свое применение в пластиках благодаря высокой термостойкости, отличной светостойкости и химстойкости.

Ультрамарины Lapis Lazuli (Китай)

Характеристики	TL 136	TL 139
ΔЕ (в сравнении с эталонным образцом) ≤	/	1,0
Оттенок (в сравнении с эталонным образцом)	Почти идентичен	1
Интенсивность цвета (в сравнен с эталонным образцом) %	100±5	5
Водорастворимые вещества %	1,0	
Свободная сера % (м/м) ≤	0,1	0,05
Летучие соединения (105±2°C) (м/м) ≤	1,0	
Остаток на сите 43 мкм (325 меш)% (м/м) ≤	0,1	
Маслоемкость % (м/м)	25-45	i
рН	6,5-7,5	5
Органический краситель	Отсутств	ует

Флюоресцентные пигменты благодаря своей яркости и эффекту находят все большее применение и в окрашивании пластмасс — такие изделия гораздо больше привлекают внимание, поэтому используются и для производства изделий бытового назначения, детских игрушек а также помогают обеспечить безопасность в изделиях повышенной видимости (сигнальных).

Технические характеристики флюоресцентных пигментов

	Radglo PS/PC	Radglo GRT	Radglo GM
Носитель	TSA-смола	РЕА-смола	BGA-смола
Содержание формальдегида	Есть	Нет 🔷	Есть
Точка плавления	Термореактивный	205-240 °C	Термореактивный
Минимальная Т ^о переработки	-	-	-
Термостойкость	180 °C	180°C	240 °C
Загрязнение формы (налипание)	Умеренное	Нет в ПВХ	Минимальное или отсутствует
Средний размер частиц	5 мкм/3 мкм	3-4,5 мкм	<3 MKM
Светостойкость	Умеренная/высокая	Умеренная/высокая	Низкая
Полимеры	ПВХ/ПУ	ПВХ	ПВХ/ПУ
Способ переработки Покрытия, каландрование, ротационное формование, экс			ование, экструзия

Технические характеристики флюоресцентных колорантов

	Radglo EA	Radglo RPC	Radglo RPCF
Носитель	Полиамидоэфир	Полиамидоэфир	Полиамидоэфир
Содержание формальдегида	Нет 🔷	Нет 🗪	Нет 🔷
Точка плавления	100-120-140 °C	125-150 °C	125-150 °C
Минимальная Т ^о переработки	150 °C	160 °C	160 °C
Термостойкость	240 °C 10′ в ПЭНД	280 °С 10′ в ПЭНД	280 °C 10′ в ПЭНД
Загрязнение формы (налипание)	Приемлемое	Минимальное	Минимальное
Средний размер частиц	8-15 мкм	8-15 мкм	8-15 мкм
Светостойкость	Хорошая	Хорошая	Хорошая
Полимеры	Полиолефины	Полиолефины и инженерные пластики	Полиолефины
Способ переработки Экструзия, выдувное формование, литье (кро		ме каландрования)	

Минимальная температура переработки > точки плавления

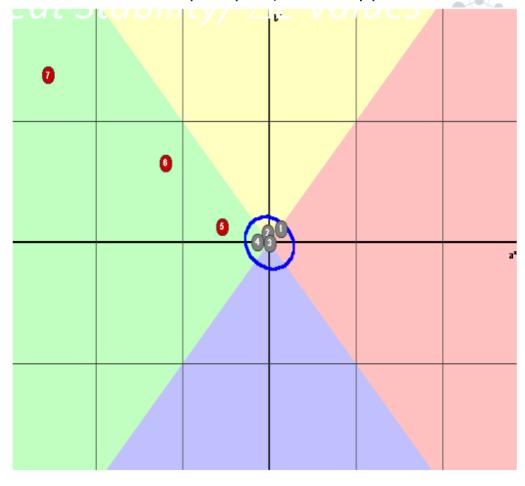
Преимущества «антипригарного» эффекта

Меньше простоев линии

Меньше расход растворителей на очистку формы

Отсутствие аллергических реакций, вызванных миграцией мономеров

✔ Внешний вид изделий одинаков



Условия работы с флюоресцентными пигментами и флюоресцентный эффект

		Δ.Γ.
EA-38	Темпер.	ΔΕ
1	190 °C	
2	210 °C	0,57
3	230 °C	0,14
4	250 °C	0,67
5	260 °C	2,29
6	270 °C	5,48
7	280 °C	10,58

Процессинговые добавки, содержащие ионы металлов, или добавки на основе полимера со структурообразователем могут вызвать изменения цвета или потерю яркости.

Соли жирных кислот цинка и кальция влияют на оттенок флюоресцентного пигмента в пластике, а изменение оттенка прямо пропорционально содержанию в добавках этих солей.

Следует выбирать добавки, не содержащие ионов металлов – гомополимеры полиэтилена и модифицированные воски.

Желтые цвета менее подвержены изменению цвета.

Что в рецептуре? Добавки с цинком уводят цвета в синюю область, снижая поглощение УФ-радиации и свечение

Кальций вызывает смещение оттенка в желтую область, но не влияет на УФ-активность.

Максимальная прозрачность и чистота полимера – залог передачи цвета без искажений.

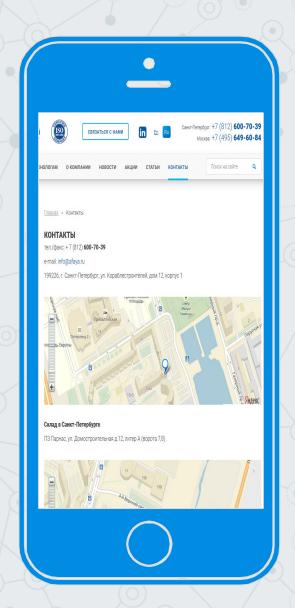
Одинаковая рецептура цвета в разных полимерах – разные изменения оттенка и эффекта.

Разные серии флюоресцентных пигментов или колорантов — разные изменения оттенка и эффекта.

Флюоресцентные колоранты для пластика, содержащие остаточные непрореагировавшие кислотные группы, также могут вступать в реакции с определенными наполнителями, такими как кальцитом и доломитом.

При повышенных температурах свободная карбоновая кислота может реагировать с наполнителем, высвобождая Са⁺⁺ и Mg⁺⁺, что также приводит к снижению эффекта.

Свяжитесь с нами


Tel./Fax: +7 (812) 600-70-39

E-mail: info@afaya.ru

www.afaya.ru

Facebook/Instagram: @afayaspb

